Fundamental Anylogic Classes

Nathaniel Osgood

10-24-2009

Object-Oriented Programming Lingo...

e A software “object” is an entity that is associated
with
— Some State
— Some behaviour

e A software “class” describes a whole category of
behaviourally similar objects
— This is like the “mould” that is used to make the objects

— While objects associated with this class may differ in the
details of their state, they have behavioural similarities

— We say that objects represented by this class are
“instances of the class”

Classes: Design & Run Time Elements

* The AnyLogic interface makes critical use of a
hierarchy of classes (e.g. Main, Agent classes,
Experiment classes)

— These classes each represent the properties
&behaviour of one or more particular objects at
runtime

— We will be discussing this hierarchy more in a later
session

e Each of these classes is associated with both

— Design time interface (appearance at design time)

— Run time elements (presence of the class object and
instances of the class at runtime)

Key Customized Classes
The structure of the model is composed of

certain key user-customized “classes”
“Agent” classes)
— Your agent classes

— There are typically many instances (objects) of these
classes

“Main” class
— Normally just one instance

— This will generally contain collections of the other
classes

“Experiment” classes

These describe assumptions to use when running the
model

Subcl f “ActiveObject”
ubclasses of “ActiveObjec

__—-—"""

Relationship Between Key Classes

 The Main object normally contains one or more
populations of “replicated” agents

— Each population consists of agents of a certain class
(or a subclass therefore) (e.g. “Hares”)

— The Main object might contain more than one
population (e.g. “Hares”, “Lynxes”)
 Agent objects are normally embedded within the
(single) Main object

— Need to mark these as Agents by checking the
“Agent” checkbox in their properties

Agent Populations

Within the Main class, you can create
representations of subpopulations by dragging from
an Agent class into the Main class area

Through the “Replication” property, the number of
these agents can be set

The “Environment” property can be used to
associated the agents with some surrounding
context (e.g. Network, embedding in some
continuous space, with a neighborhood)

Statistics can be computed on these agents

Multiple Agent Classes

 Frequently we will seek to have multiple types of
agents, each with differing types of behavior

e Sometimes these agents — while interacting — will
have radically different factors that affect them

— Cf “PredatorPrey” model, with Lynx & Hare

e Sometimes these agents — while distinctive —will
be closely related in many ways

— Here, we may wish to accomplish this through
subclasses of some common custom agent
“superclass”

— The common features of the agents would be
captured in the superclass

Capturing Agent Heterogeneity:

When To Parameterize vs. Use Distinct Classes

 We can capture heterogeneity in agent

populations both via using distinct classes (e.g.
via subclassing) and via parameterization

e Distinct classes are advisable when there are
fundamental behavioural differences

— The roles that govern the changes in behavior are
different

— There are differences in the types of behaviour that
the agents can take on
e Use differences in parameterization if the agents
are governed by similar rules, but different in
their situation/details of context within the rules

Embedded Objects

 The primary AnyLogic customized classes
(Main & Agent classes) contain certain
elements

— Parameters

— Variables

— “Actions”

— Elements of presentations

Design Time Components
Properties for entities

— Values to use at runtime/Bits of code/Data
types/Initial values of state variables/parameter
values

Declaring & manipulating variables, parameters,
functions, etc.

Prepare for runtime using “build”

— If all goes well, this translates project to executable
Java

— This may alert you to errors in the project
Define the visual elements to use for each agent
In an agent-based model, we have only one class

7

for each type of object (e.g. “Person”, “Doctor”)

Parameters: Static Quantities

Parameters normally define constants that
represent assumptions

In Java, such parameters can have many types
— Integer, Double precision value, boolean, etc.

For parameters in the Main class, we can override
the value of the parameters in an experiment

Presentation elements associated with an Agent
have special “Presentation” tab for their parameters

Variables: Dynamic Quantities

Variables are used for time-varying quantities

Note that some variables (e.g. stocks) are defined
using other “primitive” objects directly supported
by AnyLogic

As for parameters, variables come with many types

If we want to create an instance variable with a
particular class, we should do it with a variable

— Declaring things using variables (rather than in code)
gives us the option of browsing these things at runtime

Expressing Algorithms

e Algorithms in AnyLogic may be expressed in two
ways

— Defining functions (here, the modeler is responsible for
writing the Java code for the function) |5 patewe 52|

e Using the “Action” elements

. % Action Char
— This defines a function primarily graphically | & o

— Element require filling in pieces (e.g. the Jjj o Decision

[a] Local Variable

expression by which to decide the condition, (| © -
the variables over which to loop)

| %3 Model

Fe r
4 Action

Y For Loop
.E. Return

— Custom code can be inserted where desired % Break

Execution Time

Here, the simulation is running
Time is running along

Each agent class will typically have many
particular agents in existence

— Each agent will have a particular state

— This population may fluctuate

Variables will be changing value

Presentation elements will be knit together into
a dynamic presentation

Example Design Time View

These describe our variable:
& parameters

y v
M H

%éék HElEaal
- @ antermmemewderromoe ’

E R @i e e e N D

Yoz

e introduce
“functions”)
some Java
r custom

) .] behaviours
This defines the visual elemégnts to be

used for this object when jfis displayee
at runtime.

These describe the “behaviours” — the mechanisms that wi nt dynamics

Network Embedding of Agents

& 0n ESRD_IBMv3 : Simulation - Anylogic Advanced [EDUCATIONAL USE ONLY]

(el |00 | @ |: ®| x1 |(8|G, || |LE |root:Main :! o #¢ AnyLogic

[e

i
4 AN
S = ramnw ey I
SR AT
SUFERSHST S| 4
e o =
s A A e e
4% e 5 -__-,"_i._'___,.._.____- gl =
=5 E-_-'."_*"“E‘:"':‘.T;_ P __,_-':_-"" 'Ff# g
— .Ai'_'_-— "{”_ - -—#:_;:i'__'.“ = _- ol N ".-‘- i:‘i;%‘ F ,"‘E"J
> S — .

\
N
\

&.' I
N
4

1“ “ _-,,_', il e = - '

Runtime View of Particular Agent
(Drill Down from Previous View)

(< SN ESRD_IEMv3 : Simulation - Anylogic Advanced [EDUCATIONAL USE ONLY]
> [x1 [@]G [[@]@|personin S 1]f)
=,

Z! - Age
) color Aging 5551
black {3 tsrﬁbé
CirclePerimeterColorFromStat
0 IrciegFrerimeterColorrromatale {3 Fthnic“v 0 gEtDEgrEE

(3 CirclePerimeterWidthFromState

T TBng%sionStatechart
|

TBSusceptible

(3 ReactivationRateCoefficientForCKDStage

(3 ReactivationRateForCKDStage

) DR%?ctivalionRateForNormoGlycer CPeople

(-] QEaS?ZsSPerTlmeUml

_—

LTEI

Days x .
Q@ Me 355_25-I~laturalva arinfection herlnfected

WhetherPrimaryProgression

UnDiagnosedActiveT

A

] eath
DiagnosedActiveTB

Selects the agent to view

A

Run: 1 Running : Time: 3.97 : Simulation: 0% m . Memory: | &M of 63M | 17.5sec

EXperiment Classes

Experiment classes allow you to define & run scenarios
in which global parameters (i.e. parameters defined in
Main) may hold either default or alternative values

Experiment classes are also used to set
— The time horizon for a simulation

— Memory limits (important for large models)
— Details of simulation run

— Details on random number generation

“Properties” allow one to set the values for each
parameter

Right click on these & choose “Run” to run such a
scenario

Java Code: When & How Much?

 Anylogic offers lots of ways to insert snippets
(“hooks”) of Java code

* You will need these if you want to e.g.
— Push AnylLogic outside the envelop of its typical support

e e.g. Enabling a network with diverse Agent types
— Send messages
— Put into place particular initialization mechanisms
— Collect custom statistics over the population

Examples of Where to Insert Code
Object Properties

e “Advanced”

Anylogic Advanced [EDUCATIONAL USE ONLY]

800
|@-CHB|CY| 4B EX|BwO- |+ |Q % o [+] | | 28 Get support
?g Project §;§_| = O E,] AgentSuperclass |5J AgentB |:. Main java |6_] Main [6] AgentA 3 »1.1
v 5l Tevl
¥ €} Main

> ?‘G Parameters

» 43 Functions

» @ Environments
Embedded Objects
person

b @ Presentation
| 3 ‘3 Person
[3 0 Simulation: Main
» (5] ESRD_IBMv4
[3 E“;J Predator Prey Agent Based

v 5 ESRD_TBv1 i —

» €} Main
b €9 Person El Properties &2 l =] Conscle| ™
» : e
a Simulation; Main 0 Main - Active Object Class
v @ Emergency Department Tulsa |
> O Action _General | Imports section:
b) ECProcess Advanced |
» €} EDProcess
o Extends (single ActiveObject or Agent subclass):
») MoveToWith i (sing 2 g)
b €} Root v |
Implements (comma-separated list of interfaces):
= T |
21 Problems £8 =]
ot | = Additional class code:
Description Location |
g Persistent Top-level Presentation Group
E_l Persistent Top-level lcon Group
€ = — B PR (= =)
| Selection J

Main - ActiveDbjectClass

Examples of Where to Insert Code
Object Properties

IH

e “Genera

> % Parameters

> % Functions

> ﬁ?{:} Environments

v £ Embedded Objects

v ﬂ Person
> % Parameters
[{h Plain Variables
[';:Z Dynamic Variables
[(EE. Statecharts
[% Functions
b Ta Presentation
b & Simulation: Main
b 35 ESRD_IBMv4
» @] Predator Prey Agent Based
¥ 33 ESRD_TBvl

=I

An IC Advanced ULATIUNAL USE ©
J@TQH@]JQA | b4 J.u__Tu .L{ﬂﬁ*|ﬁnJ 1o0% | » | CF |_—|| J%GetSuppon
?2 Project &4 l 3] AgentSuperclass |a AgentB | Main . java | AgentFactoryjava
v 5l TBvl
v € Main

Ls
) = cor-o-

€9 Person - Active Object Class
]

General

b €3 mMain :

b &9 Person v
& - IR ERE
[% Problems E@\ ¥ =0

| Description

D lgnore

Name: | Person |

S Agent

Startup Code:

|
Destroy Code:

D Generic

Examples of Where to Insert Code
Presentations Properties

e “Dynamic”

B0 Segegihcensd)
|@-ed@| & % | [ow @~ |4 | 100% v | C¢ |
?2 Project &3 l = O || & AgentSuperclass |Eﬂ AgentB | Main java
v [TBel
v ﬂ Main
> % Parameters
» 43 Functions
> f'—@ Environments
v 5 Embedded Objects
6! person
¥ B Presentation
'D person_presentation
v &9 Person
> % Parameters
> % Plain Variables
b 53 Dynamic Variables ; —
b 02 statecharts -
» %3 Functions w = Console‘
P ik Presentation i person_presentation - Embedded Object Presentation
b €3 simulation: Main
b (35 ESRD_IBMv4 Visible:
» Predator Prey Agent Based
¥ 38 ESRD_TBvl Dynamic
» € Main i;
b & Person | bd
[——] [:
il On Click:
[l Problems 3@‘ v =0
. Rotation:
| Description -
Scale X:
Scale ¥:
3 ERN

Finding the Enclosing “Main” class
from an Embedded Agent

* From within an embedded Agent, one can find
the enclosing “Main” class by calling get Main()

— This will give a reference to the single instance

(object) of the Main class in which the agent is
embedded

— An alternative approach is to call ((Main) getOwner)

Useful Bits of Java Code

get Main() gets reference to Main object
ActiveObject.trace(str) outputs string to log
Engine.getTime() gets the current time

agents.size() gets number of objects in collection
agents

agents.item(i) gets item i from agent collection

uniform() generates a random number from 0..1

Presentation Properties

* Both key customizable classes (“Main”, various

Agent classes) can be associated with
“Presentation” elements

 These elements are assembled during execution
into animations & presentations of the agents

 Many of these presentation elements have
properties that can be set to Java expressions

Enabling Programmatic Control

800

J E-2HE J il

Anylogic Advanced [EDUCATIONAL USE ONLY]

i, Get Support

|8 8 0-1% |5 < wox) <[]0 3

Y2 Project &2 |

|(,'_3] Person &9 |»4

¥ & Person
[2 -s* Parameters

» "85 Plain Variables

» 7 Dynamic Variables
B 22 Statecharts

» '3 Functions

F @ Presentation

[3 a Simulation: Main

3] CTL State Variable va*

b & Main

¥ &3 Person

ﬁ‘ Parameters

@5 Plain Variables
Gz Dynamic Variables
%3 Functions

M Events

| 3
>
>
L 4
L 5
v

fis Presentation
O oval
~ line
> G Simulation: Main
T &l HIV_v3_8Anylogic622
» &Y Main
» E¥ person
I @l TestModel2
b € main
€3 Person

|3} TotalViralLoadOfNeighbors
3 ViralLoad
@ PerMsglVirionlnjection

O dColorCoefficient

) setPeapleColor
W) peopleColar

2 SetlmmuneResponsivenass

Lo
(=)

L

VironsProductior

@d

@ Tambda

——)

___"E

MNewlnfection

)

O Beta *
v

4|k

El console | = Properties 53 |

- = H

O oval - Oval

General

Advanced

Position X:

Cynarmic ¥
Description

|2 Problems &3 |

E‘ Persistent {enable programmatic control)

Description
EIG e TUY CaITU L UeE TEsuved

3| Engine.log cannat be resolved
Engine.log cannot be resolved
3| Engine.log cannot be resolved

Engine.log cannot be resolved

Radius X:

Radius ¥:

Rotation:

Flep i el
|°)Mode| B

Parameter

B €

Flow Aux ...
Stock Vari...
Event

Dynamic ...

<R

)
wr &

Ir
e

Plain Vari...
Collectio...
Function

Table Fun...

e
@

i)

Port
Connector

Entry Point

|,\£I5"|E‘

-
!

State
Transition
Initial Stat...
Branch

History St...

1@ O L2

Final 5tate

Environm...

| “, Action

| il Analysis

Ba Presentati... |

Connectiv...

|
| ¥ Enterpris...

Mare Libraries...

Example of D
Agent’s

0.0

ynamic Expressions for an
resentation Properties

AnylLogic Advanced [EDUCATIONAL USE ONLY]

J @17 = L&

100%
1005

e
#

f Get Support

vg Project &4 |

=i ['S_iMain

|E] Person

¥ & Person
%’ Parameters
"1 Plain Variables
> Dynamic Variables
w) Statecharts
%3 Functions
@t Presentation
[2 a Simulation: Main
I [#] CTL state Variable v4
» €3 Main
v &9 Person
@# parameters
‘-{_a Plain Variables
'-;_; Dynamic Variables
%3 Functions
Ef Events
it Presentation
O oval
" line
[2 Q Simulation: Main
i E;g;l HIV_v3_BAnylogicg22
> £ Main
» EY Person
———

(o]

R

e

TotalViralLoadOfNeighbars
2 ViralLoad
@ PerMsglVirioninjection

(® dColorCoefficient

) setPeopleColor

|":g_] person &2 |75 ==

M s

Parameter
Flow Aux ...
Stock Vari...
Event
Dynamic ...
Plain Vari...
Collectio...
Function
Table Fun...

& @

Port

Connector

) oval - Oval

General

Advanced

Dynamic

Description

|2 Problems 2 |

Description
| LG TEL U Ca oL e TesuTved

(] Engine.log cannot be resolved
(%] Engine.log cannot be resolved

(] Engine.log cannot be resolved

El console | =) Praperties 53 |

Entry Point

)N pf

ot

State

Radius X:

Radius ¥:

Replication:

Visible:

Fill Color:

peopleColor//ne

On Click:

[e

Transition
Initial Stat...

Branch

@O L

History St...
Final State

21O

Environm...

&

| “%, Action |
ila Analysis |
tia Presentati... |

o

¥ Enterpris...

More Libraries...

	Fundamental Anylogic Classes
	Object-Oriented Programming Lingo…
	Classes: Design & Run Time Elements
	Key Customized Classes
	Relationship Between Key Classes
	Agent Populations
	Multiple Agent Classes
	Capturing Agent Heterogeneity:�When To Parameterize vs. Use Distinct Classes
	Embedded Objects
	Design Time Components
	Parameters: Static Quantities
	Variables: Dynamic Quantities
	Expressing Algorithms
	Execution Time
	Example Design Time View
	Network Embedding of Agents
	Runtime View of Particular Agent�(Drill Down from Previous View)
	Experiment Classes
	Java Code: When & How Much?
	Examples of Where to Insert Code�Object Properties
	Examples of Where to Insert Code�Object Properties�
	Examples of Where to Insert Code�Presentations Properties
	Finding the Enclosing “Main” class from an Embedded Agent
	Useful Bits of Java Code
	Presentation Properties
	Enabling Programmatic Control
	Example of Dynamic Expressions for an Agent’s Presentation Properties

